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Abstract. We clarify the relationship between the Cuntz-Krieger type C∗-
algebras, introduced by the first named author in [4, 3], and C∗-algebras as-

sociated with higher-rank graphs. In particular we derive the extent to which

the two classes of C∗-algebras coincide, thereby enabling the independently
developed theories for both classes of C∗-algebras to benefit from one another.

1. Introduction

In seminal work Cuntz, and subsequently Cuntz and Krieger, introduced the
Cuntz algebras, and Cuntz-Krieger algebras respectively, as C∗-algebras generated
by a system of generators and relations [6, 7, 8]. An important characteristic of these
C∗-algebras is that they are canonically unique, in the sense that given another set
of generators satisfying the same relations the resulting C∗-algebras are canonically
*-isomorphic.

In [2] the first named author sought to prove an analogous uniqueness theorem in
a much more general setting. Based largely on the algebraic approach adopted by
Cuntz in [6] the uniqueness theorem is shown to hold for any C∗-algebra generated
by a system of generators and relations that satisfies three conditions (A), (B) and
(C). Examples of such C∗-algebras include not only the motivating Cuntz-Krieger
algebras but also to almost all of the C∗-algebras associated to infinite matrices
constructed by Exel and Laca in [9] (the Exel-Laca algebras). Further work in this
direction was presented in [4] where condition (C) was replaced by a simplified and
weaker condition (C’), which enabled the enlarged class of so-called Cuntz-Krieger
type algebras to contain all Exel-Laca algebras.

Other examples of Cuntz-Krieger type algebras were introduced in [3], which can
be thought of as higher rank Cuntz-Krieger type algebras as their definition depends
not only on a single matrix, as is the case for the original Cuntz-Krieger algebras,
but on a (finite or infinite) family of matrices. Work had begun on these higher rank
Cuntz-Krieger type algebras before the first named author became aware of a similar
construction, namely Robertson and Steger’s higher rank Cuntz-Krieger algebras
[14]. In this paper we shall consider a larger class of C∗-algebras than the class of
Robertson-Steger algebras1, namely the class of Sims’ relative Cuntz-Krieger alge-
bras of finitely aligned higher-rank graphs [15]. The relative Cuntz-Krieger algebras
of finitely aligned higher-rank graphs are a generalisation of Kumjian and Pask’s
higher-rank graph C∗-algebras [11], which were constructed to provide a graphical
model for Robertson-Steger algebras in analogy with the model that graph C∗-
algebras provide for Cuntz-Krieger algebras (see [12] for a comprehensive account
of the theory of graph C∗-algebras).

The purpose of this paper is to clarify the relationship between these construc-
tions, which will enable the theories that have been independently developed for

Both authors were supported by the EU IHP Research Training Network - Quantum Spaces
and Noncommutative Geometry (HPRN-CT-2002-00280).

1We shall refer to the higher rank Cuntz-Krieger algebras constructed by Robertson and Steger
in [14] as Robertson-Steger algebras.
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both types of construction to benefit from each other. An immediate consequence is
that the uniqueness theorem for relative Cuntz-Krieger algebras of finitely aligned
higher-rank graphs [15] is proved for (potentially) more general k-graphs (see The-
orem 2.14). In a forthcoming paper [5] we shall exploit the relationships that we
will identify in this paper to investigate the implications for such aspects as the
purely infiniteness, ideal structure and K-theory.

The remainder of the paper is organised as follows. In §2 we represent the
relative Cuntz-Krieger algebra of a finitely aligned higher-rank graph that satisfies
an aperiodicity condition as a Cuntz-Krieger type algebra. In §3 we show that some
higher rank Cuntz-Krieger type algebras may be represented as higher-rank graph
C∗-algebras when the defining family of matrices and all its constituent matrices
are finite.

We would like to express our gratitude for the support we received while working
on this project at the Universities of Münster and Rome “Tor Vergata”; from the
Operator Algebras groups at the respective universities and the EU IHP Research
Training Network - Quantum Spaces and Noncommutative Geometry.

2. A representation of higher-rank graph C∗-algebras as
Cuntz-Krieger type algebras

Let (Λ, d) be a finitely aligned k-graph [13].2 Let Σ :=
⋃k

i=1 Λei where {ei}k
i=1

are the canonical generators of Nk as a semi-group.
We state the following definition from [15] (referring the reader to [15, 16] for

notation).

Definition 2.1 ([15, Definition 3.2]). Let (Λ, d) be a finitely aligned k-graph, and
let E be a subset of FE(Λ). A relative Cuntz-Krieger (Λ; E)-family is a collection
{tλ | λ ∈ Λ} of partial isometries3 in a *-algebra satisfying:

(TCK1) {tv | v ∈ Λ0} is a collection of mutually orthogonal projections;
(TCK2) tλtµ = tλµ whenever s(λ) = s(µ);
(TCK3) t∗λtµ =

∑
(α,β)∈Λmin(λ,µ) tαt∗β for all λ, µ ∈ Λ; and

(CK)
∏

λ∈E(tr(E) − tλt∗λ) = 0 for all E ∈ E .

Remark 2.2. (1) We note that the original definition of a relative Cuntz-
Krieger (Λ; E)-family required the partial isometries to lie in a C∗-algebra
rather than a *-algebra. We allow for this more general scenario since we
will be considering *-algebras with no pre-equipped norms.

(2) For each finitely aligned k-graph Λ, and each subset E of FE(Λ) there exists
a C∗-algebra C∗(Λ; E) generated by a relative Cuntz-Krieger (Λ; E)-family
{sE(λ) | λ ∈ Λ} which is universal in the sense that if {tλ | ∈ Λ} is a
relative Cuntz-Krieger (Λ; E)-family in a C∗-algebra B, then there exists a
unique homomorphism π : C∗(Λ; E) −→ B such that π(sE(λ)) = tλ for all
λ ∈ Λ.

Recall the following key definitions from [15] (again we follow the notation used
in [15]).

2We regard a small countable category C as a sextuple (Obj(C), Mor(C), r, s, ◦, Mor0(C)) where
Obj(C), Mor(C) are countable sets, r and s are the codomain, domain maps respectively, ◦ is

an associative (partial) composition on Mor(C) (compatible with r, s) and Mor0(C) is a dis-

tinguished subset of Mor(C) called the set of unit morphisms of C. In this notation we have
Λ := (Λ0, Λ, r, s, ◦). From this point on we shall follow the usual convention of letting Λ denote

both the category and the set of morphisms.
3We call an element x in a *-algebra a partial isometry if x = xx∗x.
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Definition 2.3 ([15, Definition 6.2]). Let (Λ, d) be a k-graph, and let x : Ωk,d(x) −→
Λ and y : Ωk,d(y) −→ Λ be graph morphisms. We say that a graph morphism
z : Ωk,d(z) −→ Λ is a minimal common extension of x and y if it satisfies

(1) d(z)j = max{d(x)j , d(y)j} for 1 ≤ j ≤ k; and
(2) z|Ωk,d(x) = x and z|Ωk,d(y) = y.

We write MCE(x, y) for the collection of minimal common extensions of x and y.

Definition 2.4. Let (Λ, d) be a k-graph and let E be a subset of FE(Λ). We say
that Λ satisfies property
(AP) if for all v ∈ Λ0 there exists x ∈ vΛ∗ satisfying

(1) for distinct λ, µ ∈ Λr(x), we have MCE(λx, µx) = ∅;
(B) if for all v ∈ Λ0 there exists x ∈ vΛ≤∞ satisfying (1); and

(C0) if for all v ∈ Λ0 there exists x ∈ v∂(Λ; E) satisfying (1).
We say that (Λ, E) satisfies (C) if Λ satisfies (C0) and for all v ∈ Λ0, F ∈
v FE(Λ)\Ē there exists x ∈ v∂(Λ; E)\F∂(Λ; E) satisfying (1).

Remark 2.5.
(1) Property (B) was defined in an equivalent way in [13, Definition 2.8] (see

[16, Remark 4.6.7]). Property (C) was defined in [15, Theorem 6.3] and
[16, Theorem 4.5.2].

(2) In general we have

(B) =⇒ (AP) ⇐ (C0) ⇐ (C).

We also have Λ≤∞ ⊆ ∂(Λ; FE(Λ)) ⊆ Λ∗. Therefore, when E = FE(Λ) we
have

(B) =⇒ (C0) ⇐⇒ (C) =⇒ (AP).

Fix a finitely aligned k-graph Λ and a subset E of FE(Λ). Let A := {t̃λ | λ ∈
Σ} t {t̃v | v ∈ Λ0}, i.e. an alphabet of symbols indexed Σ ∪ Λ0. Let F be the free
*-algebra generated by A. Let I := kerπ, a self-adjoint, two-sided ideal in F, where
π : F −→ C∗(Λ; E) is the unique *-homomorphism satisfying π(t̃λ) = sE(λ) for all
λ ∈ Σ ∪ Λ0. To avoid confusion, let tλ := t̃λ + I ∈ F/I for all λ ∈ Σ ∪ Λ0. There
is, of course, a *-monomorphism Ψ : F/I −→ C∗(Λ; E) sending tλ to sE(λ) for all
λ ∈ Σ ∪ Λ0.

Let θ : Tk −→ TA be defined by

θ(z)t̃λ
=
{

zi if d(λ) = ei,
1 if d(λ) = 0,

for all λ ∈ Σ ∪ Λ0. It is straightforward to show that θ is a topological group
isomorphism of Tk onto H := θ(Tk) and thus in particular H is a closed subgroup
of TA.

We aim to show that conditions (A),(B),(C’) from [2] hold for the system (F, I,H).
For convenience we restate each property using slightly different notation. We shall
follow [2] for the remaining notation.

Recall the following distinguished subsets of F/I:
W := {a1 · · · an | n ≥ 1, ai ∈ A tA∗ for 1 ≤ i ≤ n}+ I,
W0 := {w ∈ W\{0} | bal(w) = 0},
∆ := {ww∗ | w ∈ W},
A := Alg∗(W0) ⊆ F/I,

A0 := Alg∗(∆) ⊆ F/I,
P := {p ∈ A | p = p∗ = p2 6= 0},

P0 := {p ∈ A0 | p = p∗ = p2 6= 0},
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(see later for definition of bal). There is, of course, a natural partial order on P,
which we denote by ≤, given by

p ≤ q ⇐⇒ pq = p for all p, q ∈ P.

Moreover, for p, q ∈ P we write p � q in A when there exists an element s ∈ A such
that ss∗s = s, s∗s = p and ss∗ ≤ q.

Definition 2.6. We say that the system (F, I,H) satisfies property
(A) if Γz(I) ⊆ I for all z ∈ H, where Γz : F −→ F is the *-automorphism

satisfying Γz(a) = zaa for all z ∈ H;
(B) if for all n ≥ 1 and x1, . . . , xn ∈ A there exists a finite dimensional C∗-

algebra B ⊆ A such that x1, . . . , xn ∈ B;
(C’) if for all w ∈ W\W0, e ∈ P there exists p ∈ P such that p ≤ e and pwp = 0;

and
(C’*) if there exists a subset P2 ⊆ P such that for each q ∈ P there exists a ρ ∈ P2

such that ρ � q in A and for all w ∈ W\W0, e ∈ P2 there exists p ∈ P2 such
that p ≤ e and pwp = 0.

Lemma 2.7. The system (F, I,H) as defined above satisfies property (A).

Proof. Let z ∈ H and x ∈ I. Then, it is easy to see that πΓz = γθ−1(z)π for all
z ∈ TA. Thus π(Γz(x)) = γθ−1(z)(π(x)) = 0 so that Γz(x) ∈ I. �

Since (F, I,H) satisfies (A), by [2, Lemma 3.1] there exists a balance function
bal : W\{0} −→ Ĥ satisfying

bal(xy) = bal(x) bal(y), and bal(z∗) = bal(z)−1

for all x, y, z ∈ W such that xy 6= 0 and z 6= 0. It is easy to see that under the
canonical identification of Ĥ ∼= T̂k with Zk we have bal(tλ) = d(λ).4

For λ ∈ Λ define tλ := Ψ−1(sE(λ)) and note that this definition agrees with the
original definition of tλ when λ ∈ Σ∪Λ0. By construction {tλ | λ ∈ Λ} is a relative
Cuntz-Krieger (Λ; E)-family in F/I.

Lemma 2.8 (Definition). Let (Λ, d) be a finitely aligned k-graph. Suppose that
{τλ | λ ∈ Λ} is a family of partial isometries satisfying (TCK1)–(TCK3) in a *-
algebra B. Given a finite subset E ⊆ Λ, there exists a finite subset ΠE such that
E ⊆ ΠE and

Mτ
ΠE := span{τλτ∗µ | λ, µ ∈ ΠE, s(λ) = s(µ), d(λ) = d(µ)}

is a finite dimensional *-subalgebra of B. Moreover, if E and F are finite subsets
of Λ then ΠE ⊆ ΠF so that Mτ

ΠE ⊆ Mτ
ΠF .

Proof. The assertions are essentially collected from [16, Lemma 3.4.2, Lemma 3.4.7].
�

Lemma 2.9. Let (Λ, d) and (F, I,H) be as above. Then

A = span{tλt∗µ | λ, µ ∈ Λ, s(λ) = s(µ), d(λ) = d(µ)}

=
⋃

E⊆Λ
finite

M t
ΠE .

Hence (F, I,H) satisfies property (B).

4In more detail we have ct̃λ
◦ θ = χd(λ) where ct̃λ

is the character of H defined in [4] and for

each n ∈ Zk, χn is the character z 7→ zn for all z ∈ Tk.
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Proof. The first equality follows from the identification bal(tλ) = d(λ) for all λ ∈
Σ∪Λ0 and the relations (TCK1)–(TCK3). The second equality follows from Lemma
2.8 and the final assertion is obvious. �

Lemma 2.10 ([16, Proposition 3.5.3]). Let (Λ, d) be a finitely-aligned k-graph,
let {τλ | λ ∈ Λ} be a family of partial isometries satisfying (TCK1)–(TCK3) in a
*-algebra B, and let E ⊆ Λ be finite. Define

ΘΠE
λ,µ(τ) := τλτ∗λ

∏
λν∈ΠE
d(ν)>0

(τλτ∗λ − τλντ∗λν).

Then {ΘΠE
λ,µ(τ) | λ, µ ∈ Λ, s(λ) = s(µ), d(λ) = d(µ)} is a collection of matrix units

for Mτ
ΠE .

Lemma 2.11. If Λ satisfies (AP), then the system (F, I,H) as defined above
satisfies condition (C’*).

Proof. We claim that {tλtλ | λ ∈ Λ} is a valid candidate for P2. Indeed, if q ∈ P
then q ∈ M t

ΠE for some finite subset E ⊆ Λ by Lemma 2.9. By [16, Lemma 3.6.2]
there exists a non-zero projection q′ such that q′ ≤ q and q′ ∈ M t

ΠE(n, v) for some
v ∈ s(ΠE) and some n ∈ d(ΠEv), where M t

ΠE(n, v) is a simple finite dimensional
*-algebra spanned by the family of (non-zero) matrix units {ΘΠE

λ,µ(t) | λ, µ ∈ ΠEv∩
Λn}. Therefore, there exists a partial isometry s ∈ M t

ΠE(n, v) such that s∗s = q′

and ss∗ =
∑

λ∈F ΘΠE
λ,λ(t) for some finite subset F ⊆ ΠEv∩Λn. Now tλt∗λ ≤ ΘΠE

λ,λ(t)
for all λ ∈ Λ therefore, choose any λ0 ∈ F and set ρ := tλ0t

∗
λ0

. Then ρ ∈ P2 and
σ := s∗ρ implements the relation ρ � q in A as required.

If w ∈ W then a simple inductive argument using (TCK1)–(TCK3) shows that
w =

∑
(λ,µ)∈F tλt∗µ for some finite subset F ⊆ {(ξ, η) ∈ Λ × Λ | d(ξ) = m, d(η) =

n, s(ξ) = s(η)} for some m,n ∈ Nk. Furthermore, if w 6∈ W0 then we must have
m 6= n. We shall prove that given any w =

∑
(ξ,η)∈F tξt

∗
η ∈ W\W0 and any e ∈ P2

there exists p ∈ P2 such that pwp = 0 by induction on the cardinality of F .
Suppose that |F | = 1, then w = tξt

∗
η for some ξ, η ∈ Λ with s(ξ) = s(η) and

d(ξ) 6= d(η). We also have e = tλ0t
∗
λ0

for some λ0 ∈ Λ. Set N := d(ξ)∨d(η)∨d(λ0).
There are two cases to consider.

Case 1. Suppose that MCE({λ0, ξ, η}) = ∅ and let λ ∈ λ0Λ≤N−d(λ0). If d(λ) =
N then either λ(0, d(ξ)) 6= ξ or λ(0, d(η)) 6= η. In either case we have

tλt∗λtξt
∗
ηtλt∗λ = tλt∗λ(d(ξ),N)t

∗
λ(0,d(ξ))tξt

∗
ηtλ(0,d(η))tλ(d(η),N)

= 0.

On the other hand, if d(λ) < N , then there exists 1 ≤ i ≤ k such that d(λ)i <
d(ξ)i or d(λ)i < d(η)i. Without loss of generality, suppose d(λ)i < d(ξ)i. Then
Λmin(λ, ξ) = ∅, otherwise there exists µ ∈ MCE(λ, ξ) so that µ(d(λ), d(λ) + ei) ∈
s(λ)Λei contradicting the fact that Λei = ∅. Therefore,

tλt∗λtξt
∗
ηtλtλ = 0.

Case 2. Suppose that MCE({λ0, ξ, η}) 6= ∅. Then choose any λ̃ ∈ MCE({λ0, ξ, η})
and set µ := λ̃(d(ξ), N), ν := λ̃(d(η), N) and v := s(λ̃). Since Λ satisfies (AP)
there exists x ∈ vΛ∗ satisfying (1) in Definition 2.4. By [16, Lemma 4.5.3], there ex-
ists an n ∈ Nk such that n ≤ d(x) and Λmin(µx(0, n), νx(0, n)) = ∅. Set L := N +n.
Now L ≤ N + d(x), therefore we may define p := tλt∗λ ∈ P2 where λ := (λ̃x)(0, L).
We have λ(0, d(λ0)) = λ0, λ(0, d(ξ)) = ξ and λ(0, d(η)) = η, so that p ≤ tλ0t

∗
λ0

= e
and

pwp = tλt∗λ(d(ξ),L)tλ(d(η),L)t
∗
λ

= 0
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since λ(d(ξ), L) = µx(0, n), λ(d(η), L) = νx(0, n) and Λmin(µx(0, n), νx(0, n)) = ∅.
We have now proved the first step of the induction process.

For the induction hypothesis, assume that given any w ∈ W that can be ex-
pressed as w =

∑
(ξ,η)∈F tξt

∗
η for some subset F ⊆ Λn × Λm (n 6= m) of cardinality

j, and given any e ∈ P2, there exists p ∈ P2 such that pwp = 0.
Now given any w ∈ W with w =

∑
(ξ,η)∈F tξt

∗
η with F ⊆ Λn × Λm, |F | = j + 1

and any e ∈ P2, choose any (ξ0, η0) ∈ F and set w′ =
∑

(ξ,η)∈F\{(ξ0,η0)} tξt
∗
η. Then

there exists a p0 ∈ P2 such that p0 ≤ e and p0w
′p0 = 0. Moreover, by the above,

there exists p ∈ P2 such that p ≤ p0 and ptξ0t
∗
η0

p = 0. Therefore p ≤ e and
pwp = pp0w

′p0p + ptξ0t
∗
η0

p = 0, as required. �

Proposition 2.12 (cf. [16, Proposition 3.5.8]). Let (Λ, d) be a finitely aligned
k-graph and let {τλ | λ ∈ Λ}, {τ ′λ | λ ∈ Λ} be two families of partial isometries
in *-algebras A,B respectively, satisfying (TCK1)–(TCK3). Furthermore, suppose
that τv 6= 0 and τ ′v 6= 0 for all v ∈ Λ0. Then there exists a *-isomorphism

πτ,τ ′ : span{τλτ∗µ | d(λ) = d(µ)} −→ span{τ ′λτ ′
∗
µ | d(λ) = d(µ)}

if and only if for all E ∈ FE(Λ) we have∏
λ∈E

(τr(E) − τλτ∗λ) = 0 ⇐⇒
∏
λ∈E

(τ ′r(E) − τ ′λτ ′
∗
λ) = 0.

Proof. This is proved in the proof of [16, Proposition 3.5.8], the only difference
being that we are content with considering *-algebras rather than C∗-algebras. �

Lemma 2.13 ([16, Corollary 4.3.10]). Let (Λ, d) be a finitely aligned k-graph and
let E ⊆ FE(Λ). Let {sE(λ) | λ ∈ Λ} be the universal generating Cuntz-Krieger
(Λ; E)-family in C∗(Λ; E). Then

(1) sE(v) 6= 0 for all v ∈ Λ0; and
(2) if E ∈ FE(Λ) then

∏
λ∈E(sE(r(E)) − sE(λ)sE(λ)∗) = 0 if and only if E

belongs to Ē .

Theorem 2.14. Let (Λ, d) be a finitely aligned k-graph and let E ⊂ FE(Λ). Sup-
pose that Λ satisfies (AP). Let {τλ | λ ∈ Λ} be a Cuntz-Krieger (Λ; E)-family in a
C∗-algebra B such that

(i) τv 6= 0 for all v ∈ Λ0, and
(ii)

∏
λ∈F (τr(F ) − τλτ∗λ) 6= 0 for all F ∈ FE(Λ)\Ē .

Then the *-homomorphism πEτ : C∗(Λ; E) −→ B satisfying πEτ (sE(λ)) = τλ for all
λ ∈ Λ is faithful.

Proof. Define ρ := πEτ Ψ. Now πEτ is injective on Ψ(A) by Lemma 2.8, Lemma
2.13 and Proposition 2.12. Moreover, Ψ is injective on A since Ψ is known to be
injective, thus ρ is also injective on A. By Lemmas 2.7 and 2.9 (F, I,H) satisfies
(A) and (B). Furthermore, as (F, I,H) satisfies property (C’*), by Lemma 2.11, it
must also satisfy property (C’), by [4, Lemma 2.4]. We may now apply [4, Theorem
2.3] to conclude that πEτ is injective �

Remark 2.15. It seems that we have proved an uniqueness theorem for a wider
class of relative higher-rank graph C∗-algebras than has been done previously. In-
deed, by Remark 2.5 we may deduce [16, Theorem 4.5.2],[16, Theorem 4.6.5], [13,
Theorem 4.5] from Theorem 2.14. Compare also with [10, Theorem 7.1], [10, Re-
marks 7.3], [16, Remark 4.6.7] and [2, Proposition 4.3].

Remark 2.16. It is likely that Theorem 2.14 also holds for uncountable finitely
aligned higher-rank graphs.
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3. A representation of higher rank Cuntz-Krieger type C∗-algebras
as higher rank graph C∗-algebras

In [3] the first named author introduced a class of higher rank Cuntz-Krieger
type C∗-algebras, which were shown to be of Cuntz-Krieger type. A higher rank
Cuntz-Krieger type C∗-algebra is given by a set A (the alphabet), which is endowed
with a fixed partition V := {Vi |; i ∈ I}, a self-adjoint, two-sided idea I in the free
*-algebra F generetated by A, which satisfies certain properties described below,
and a family of matrices {Ai | i ∈ I} with Ai ∈ {0, 1}Vi×Vi . We shall only be
concerned with the case when I and Vi, (i ∈ I) are finite.

For each subset X of F we let X∗ := {x∗ | x ∈ X} and put X~ := X ∪X∗. For
ease of notation we define two relations on A~:

a ∼ b ⇐⇒ ∃ i ∈ I such that a, b ∈ Vi or a, b ∈ V ~,

a‖b ⇐⇒ ∃ i, j ∈ I such that i 6= j and a ∈ V ~
i , and b ∈ V ~

j .

For each element x ∈ F we let x̃ be the image of x in F/I under the natural *-
homomorphism. Similarly we let X̃ be the image of a subset X. For each a ∈ A
let Qa := a∗a, Pa := aa∗, qa := Q̃a and pa := P̃a. As stated above, we assume the
ideal I satisfies some properties, which are (cf. [3, Definition 2.1]):5

Cuntz-Krieger relations. For each i ∈ I and a ∈ Vi the following relations hold in
F/I:

a = aa∗a, qaqb = qbqa, papb = δa,bpa, qapb = Ai(a, b)pb.

Permutation rules. For all a, b ∈ A~ such that a‖b we have ab = 0 or there exist
A,B ∈ A~ such that A ∼ a, B ∼ b and

ab = BA and Ab∗ = B∗a.

Invariance under the gauge actions. The ideal I is invariant under the *-automorphisms
φz : F −→ F given by φz(a) = zaa for all a ∈ A and z = {za}a∈A ∈ H, where

H := {{za}a∈A ∈ TA | ∀ a, b ∈ A, a ∼ b =⇒ za = zb}.

Projections property. For all x = x1 · · ·xm such that xj ∈ Ã with xx∗ 6= 0, and se-
quences {an}n≥1 ⊂ Vi (i ∈ I), there exists N ≥ 1 such that xx∗a1 · · · aNa∗N · · · a∗1 6=
xx∗.
Saturating A00-faithful representation. There exists a representation π : F/I −→
B(H) (H a Hilbert space) such that for all i ∈ I the strong operator sum Ui :=∑

b∈Vi
π(pb) satisfies Uiπ(a) = π(a)Ui = π(a) for all a ∈ Ṽi. Such a representation

is called saturating. Moreover we assume that this π is faithful on the *-subalgebra
A00 in F/I generated by {aa∗ ∈ F/I | a ∈ Ã}.

Let W := W (A) be the image in F/I of the set of all words in F consisting of
letters in A. The existence of a balance function bal : W\{0} −→

⊕
i∈I Z, which

has the form bal(a) = δi for a ∈ Ṽi is shown in [3, §3].
We can now recall the definition of a higher rank Cuntz-Krieger algebra (in the

case when V is a finite partition consisting of finite sets).

Definition 3.1 ([3, Definition 2.2]). Let (A, V, {Ai | i ∈ I}, I) be as above. Let
π1 : F/I −→ A1 be a *-homomorphism into a C∗-algebra A1 such that π1 has
dense image and is faithful on A00. Then we call the C∗-algebra A1 a higher rank
Cuntz-Krieger type algebra and denote it by OF,I.

5As we are assuming thatA has a finite partition consisting of finite sets, the finiteness property
in [3, Definition 2.1] is satisfied automatically (see [3, Remark 2.5]).
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Remark 3.2. The definition of OF,I does not depend on the representation π1 up
to *-isomorphism due to the uniqueness theorem [3, Theorem 2.3].

Let Obj(Λ) := {(a1, . . . , ak) ∈ V1× · · ·×Vk | a1a
∗
1 · · · aka∗k 6= 0}. For a ∈ Obj(Λ)

let sa = a1a
∗
1 · · · aka∗k. We define

Mor(Λ) := {sawsb | a, b ∈ Obj(Λ), w ∈ W sawsb 6= 0} ∪ {sa | a ∈ Obj(Λ)}.
We define the range and source map as follows:

r(sawsb) = r(sa) = sa s(sawsb) = s(sb) = sb,

for each a, b ∈ Obj(Λ) and w ∈ W . Composition in Λ is given by multiplication in
F/I. The following lemma shows that the composition is well-defined. Furthermore
it is clear that the set of identity morphisms is {sa | a ∈ Obj(Λ)} and that the
composition is associative.

Lemma 3.3. If a, b ∈ Obj(Λ) and w ∈ W such that sawsb 6= 0 then sawsb = wsb

and a is uniquely determined by wsb.

Proof. Let a = (a1, . . . , ak), b = (b1, . . . , bk) ∈ Obj(Λ) and w ∈ W such that
sawsb 6= 0. We shall prove the Lemma by induction on the length6 of the word w So
let w be of length 1, i.e. w ∈ Ã, and without loss of generality, suppose that w ∈ Vk.
By [3, Lemma 4.3] we have bib

∗
i bjb

∗
j = bjb

∗
jbib

∗
i for all i, j ∈ {1, . . . , k}, therefore

wbj 6= 0 for all j = 1, . . . , k. Thus by multiple applications of [3, Lemma 4.1]
there exist (c1, . . . , ck−1) ∈ Ṽ1×· · ·× Ṽk−1 such that wsb = c1c

∗
1 · · · ck−1ck−1ckc∗kws

where ck := w ∈ Ṽk. Therefore we have shown that wsb = scwsb where c =
(c1, . . . , ck) ∈ Obj(Λ) and it remains to show that c = a. To this end, note that for
all x, y ∈ Obj(Λ) we have sxsy = δx,ysx by [3, Lemma 4.3] and the Cuntz-Krieger
relations pxipyi = δxi,yipxi for all i = 1, . . . , k. Therefore since 0 6= sawsb = sascwsb

we have sa = sc. �

The degree functor d : Λ −→ Nk is given by the balance function, i.e. d(λ) =
bal(λ) for all λ ∈ Λ.

Lemma 3.4. Let Λ be the category with degree functor d : Λ −→ Nk as defined
above. Then d satisfies the factorisation property.

Proof. We must show that given any λ ∈ Λ such that d(λ) = m + n then there
exist unique ξ, η ∈ Λ such that λ = ξη. The existence of such a decomposition
follows from an inductive argument on the length of the word w, which uses the
permutation rules in F/I (it is trivial if d(λ) = 0).

The uniqueness of the decomposition follows from [3, Lemma 4.4]. �

Theorem 3.5. Let Λ and d : Λ −→ Nk be the category and functor respectively
defined above. Then Λ is a row-finite k-graph with no sources.

Proof. Lemma 3.4 shows that (Λ, d) is a k-graph. That Λ is row-finite follows from
the facts that each morphism of Λ is uniquely determined by its range, source
and degree (by Lemma 3.3), and that Obj(Λ) is finite. That Λ has no sources
follows from the existence of a A00-faithful saturating representation: given any
a = (a1, . . . , ak) ∈ Obj(Λ) and i = 1, . . . , k, we have

0 6= a1a
∗
1 · · · aka∗kai = a1a

∗
1 · · · aka∗kaib1b

∗
1 · · · bi−1b

∗
i−1bi+1b

∗
i+1bkb∗k

=
∑

bi∈Vi

a1a
∗
1 · · · aka∗kaib1b

∗
1 · · · bkb∗k

6Suppose that 0 6= w = w1 · · ·wn = x1 · · ·xm for some m, n ≥ 1 and wi, xj ∈ Ã for i =
1, . . . , n, j = 1, . . . , m. Then an application of the balance function to w shows that m = n.
Therefore the concept of a word consisting of letters in Ã having a (unique) length is well-defined.
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for some (b1, . . . , bi−1, bi+1, . . . , bk) ∈ V1×· · ·Vi−1×Vi+1 · · ·Vk (uniquely determined
by a and ai). Thus, there exists a bi ∈ Vi such that a1a

∗
1 · · · aka∗kaib1b

∗
1 · · · bkb∗k 6= 0

therefore aΛei 6= ∅. �

Lemma 3.6. Let Λ be the k-graph defined above. For each λ ∈ Λ let tλ = π1(λ) ∈
OF,I, where π1 is the representation in Definition 3.1 . Then the set {tλ | λ ∈ Λ} is
*-representation of Λ in OF,I in the sense of [11, Definitions 1.5].

Proof. First note that it is clear that {tλ | λ ∈ Λ} is a set of partial isometries. The
set {tv | v ∈ Λ0} is clearly a set of projections, which are are mutually orthogonal by
the Cuntz-Krieger relations and commutativity of the range projections [3, Lemma
4.3]. Thus we have shown that [11, Definitions 1.5, (i)] holds. Lemma 3.3 ensures
that [11, Definitions 1.5, (ii)] holds. An application of [3, Lemma 4.3] and the
Cuntz-Krieger relations shows that [11, Definitions 1.5, (iii)] holds. To prove that
[11, Definitions 1.5, (iv)] holds, i.e that tv =

∑
λ∈vΛn tλt∗λ for all n ∈ Nk we make

use of the fact that we need only prove that the relation holds for n = ei for all
i = 1, . . . , k (cf. [11, Remarks 1.6, (iii)]). To this end we note that the existence of
a saturating A00-faithful representation ensures that ui := π1(

∑
a∈Vi

pa) is a unit
for π1(b) for all b ∈ Vi, thus for v = (v1, . . . , vk) ∈ Obj(Λ) we have

vΛei = {svvisb | b ∈ Obj(Λ), Ai(vi, bi) = 1 and for j 6= i,

bj is uniquely determined by vi and vj},
and ∑

λ∈vΛei

tλt∗λ = πi

(∑
bi∈Vi

visbv
∗
i

)
= π1(vi)

∑
bi∈Vi

π1(pbi
)π1(pb1 · · · pbi−1pi+1 · · · pbk

v∗i )

= π1(vipb1 · · · pbi−1pi+1 · · · pbk
v∗i )

= π1(sv) = tv.

�

We now state and prove the main result of this section.

Theorem 3.7. Let (A, V, {Ai | i ∈ I}, I) and Λ be as described in this section.
Then

(1) C∗(Λ) is canonically *-isomorphic to a *-subalgebra of OF,I; and
(2) if we make the further assumption that the following holds in OF,I∑

b1∈Ṽ1,...,bk∈Ṽk

π1(b1b
∗
1 · · · bkb∗k) = 1,

then OF,I ∼= C∗(Λ).

Proof. To prove (1), note that we have already shown in Lemma 3.6 that {tλ | λ ∈
Λ} is a *-representation of Λ in OF,I, therefore by universality of the k-graph C∗-
algebras there exists a *-homomorphism ρ : C∗(Λ) −→ OF,I. Now tv 6= 0 for
all v ∈ Obj(Λ) by definition and the invariance under the gauge automorphisms
property ensures the existence of a gauge action on OF,I that intertwines ρ and the
canonical gauge action on C∗(Λ). Thus by gauge invariant uniqueness theorem [11,
Theorem 3.4] ρ is injective.

To prove (2), note that in addition we have for all i = 1, . . . , k and a ∈ Ṽi:

π1(a) =
∑

b∈Obj(Λ)

π1(asb).



10 BERNHARD BURGSTALLER AND D. GWION EVANS

Therefore {tλ | λ ∈ Λ} generates OF,I and ρ is surjective. �
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